
������
�����
	����
�

AN461
In-circuit and In-application programming
of the 89C51Rx+/Rx2/66x microcontrollers

Supersedes data of 2001 Oct 11 2002 Jun 24

INTEGRATED CIRCUITS

ABSTRACT
This application note describes the three methods that can be used to
program the Flash code memory of the 89C51Rx+/Rx2/66x families
of microcontrollers. It discusses in detail the operation of the
In-System Programming (ISP) capability which allows these
microcontrollers to be programmed while mounted in the end product.
These microcontrollers also have an In-Application Programming
(IAP) capability which allows them to be programmed under firmware
control of the embedded application. This capability is also described.

Philips Semiconductors Application note

AN461In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

22002 Jun 24

INTRODUCTION
This document gives a brief list of features for the
89C51Rx+/Rx2/66x family of microcontrollers with Flash memory,
and the ways that the Flash memory can be programmed.

MCU FEATURES
• 80C51 CPU

• 8K,16K,32K,64 kB Flash EPROM

• Flash EPROM is sectored to allow the user to erase and
reprogram sectors

• 1 kB Masked BOOTROM for In-System Programming of the Flash
EPROM

• User callable BOOTROM subroutines for Flash erase and
programming

• Can automatically run user program or BOOTROM program at
power-up

• Three security bits

• Fully static operation: 0 to 33 MHz @ 12 clocks/instruction; 0 to
20 MHz @ 6 clocks/instruction

• 100% code and pin compatibility with 80C52

• Packages: 44-pin PLCC, 44-pin QFP, 40-pin DIP

The Flash Program Memory can be programmed
using three different methods:
• The traditional parallel programming method (not described in this

Application Note)

• A new In-System Programming method (ISP) through the serial
port

• In Application programming method (IAP) under control of a
running microcontroller application program

Programming functions support the following functions:

• erase and blank check Flash memory

• program and read / verify Flash memory

• program and verify security bits, status byte and boot vector

• read signature bytes

• full-chip erase

Memory Spaces
Code memory on Philips Flash microcontrollers is organized into
sectors of 4 kB, 8 kB, or 16 kB, as indicated below. Different
amounts of memory are present depending on the specific device as
shown in Table 1 and Table 2 below.

Table 1. Memory Block of Philips ISP Flash Microcontrollers
Memory Block P89C51RB2H/RB+/660 P89C51RC2H/RC+/662 P89C51RD2H/RD+/664/68

8 kB (0–1FFF) X X X

8 kB (2000–3FFF) X X X

16 kB (4000 – 7FFF) X X

16 kB (8000–BFFF) X

16 kB (C000–FFFF) X

Total Flash Memory 16 kB 32 kB 64 kB

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 3

Table 2. Memory Block of Philips P89C51Rx2 1 ISP Flash Microcontrollers
Memory Block P89C51RA2 P89C51RB2 P89C51RC2 P89C51RA2

4 kB, (0–FFF) X X X X

4 kB, (1000– 1FFF) X X X X

4 kB, (2000–2FFF) X X X

4 kB, (3000–3FFF) X X X

4 kB, (4000– 4FFF) X X

4 kB, (5000– 5FFF) X X

4 kB, (6000– 6FFF) X X

4 kB, (7000– 7FFF) X X

4 kB, (8000– 8FFF) X

4 kB, (9000– 9FFF) X

4 kB, (A000– AFFF) X

4 kB, (B000– BFFF) X

4 kB, (C000– CFFF) X

4 kB, (D000– DFFF) X

4 kB, (E000– EFFF) X

4 kB, (F000– FFFF) X

Total Flash Memory 8 kB 16 kB 32 kB 64 kB
NOTE:
1. Some ISP and IAP functions are only available for the 2nd generation P89C51Rx2 devices. The shaded areas in the following tables denote

these functions. These Rx2 devices can be distinguished from older Rx2 devices by the absence of an “H” in the part number.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 4

General Overview of In-System Programming (ISP)
In-System Programming (ISP) is a process whereby a blank device
mounted to a circuit board can be programmed with the end-user
code without the need to remove the device from the circuit board.
Also, a previously programmed device can be erased and
reprogrammed without removal from the circuit board.

In order to perform ISP operations the microcontroller is powered up
in a special “ISP mode”. ISP mode allows the microcontroller to
communicate with an external host device through the serial port,
such as a PC or terminal. The microcontroller receives commands
and data from the host, erases and reprograms code memory, etc.
Once the ISP operations have been completed the device is
reconfigured so that it will operate normally the next time it is either
reset or power removed and reapplied.

All of the Philips microcontrollers shown in Table 1 and Table 2 have
a 1 kB factory-masked ROM located in the upper 1 kB of code
memory space from FC00 to FFFF. This 1 kB ROM is in addition to
the memory blocks shown in Table 1 and Table 2. This ROM is
referred to as the “Bootrom”. This Bootrom contains a set of
instructions which allows the microcontroller to perform a number of
Flash programming and erasing functions. The Bootrom also
provides communications through the serial port. The use of the
Bootrom is key to the concepts of both ISP and In-Application
Programming (IAP). The contents of the bootrom are provided by
Philips and masked into every device.

When the device is reset or power applied, and the EA/ pin is high or
at the VPP voltage, the microcontroller will start executing
instructions from either the user code memory space at address
0000h (“normal mode”) or will execute instructions from the Bootrom
(ISP mode). Selection of these modes will be described later.

General Overview of In-Application Programming
(IAP)
Some applications may have a need to be able to erase and
program code memory under the control fo the application. For

example, an application may have a need to store calibration
information or perhaps need to be able to download new code
portions. This ability to erase and program code memory in the
end-user application is “In-Application Programming” (IAP).

The Bootrom routines which perform functions on the Flash memory
during ISP mode such as programming, erasing, and reading, are
also available to end-user programs. Thus it is possible for an
end-user application to perform operations on the Flash memory. A
common entry point (FFF0h) to these routines has been provided to
simplify interfacing to the end-users application. Functions are
performed by setting up specific registers as required by a specific
operation and performing a call to the common entry point. Like any
other subroutine call, after completion of the function, control will
return to the end-user’s code.

The Bootrom is shadowed with the user code memory in the
address range from FC00h to FFFFh. This shadowing is controlled
by the ENBOOT bit (AUXR1.5). When set, accesses to internal code
memory in this address range will be from the boot ROM. When
cleared, accesses will be from the user’s code memory. It will be
NECESSARY for the end-user’s code to set the ENBOOT bit prior to
calling the common entry point for IAP operations, even for devices
with 16 kB, 32 kB, and 64 kB of internal code memory. (ISP
operation is selected by certain hardware conditions and control of
the ENBOOT bit is automatic when ISP mode is activated).

Using the Watchdog Timer (WDT)
The 89C51Rx2 and 89C66x devices support the use of the WDT in
IAP. The user specifies that the WDT is to be fed by setting the most
significant bit of the function parameter passed in R1 prior to calling
PGM_MTP. The WDT function is only supported for Block Erase
when using the Quick Block Erase. The Quick Block Erase is
specified by performing a Block Erase with Register R0 = 0.
Requesting a WDT feed during IAP should only be performed in
applications that use the WDT since the process of feeding the WDT
will start the WDT if the WDT was not running.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 5

IN-SYSTEM PROGRAMMING (ISP)
The Philips In-System Programming (ISP) facility has made in-circuit
programming in an embedded application possible with a minimum
of additional expense in components and circuit board area.

The ISP function uses five pins: TxD, RxD, VSS, VCC, and VPP (see
Figure 1). Only a small connector needs to be available to interface
your application to an external circuit in order to use this feature.
The VPP supply should be decoupled and VPP not allowed to
exceed datasheet limits.

VSS

X2

X1

RST

VCC

+12V/5V*

+5V

TxD

RxD

VSS

VCC

VPP

TxD

RxD

SU01690
*Depends on specific device – see text

0.1µF
P2.7*’1’

‘0’ at falling
edge of reset

PSEN

P2.6*’1’

Figure 1. In-System Programming with a Minimum of Pins

In order to understand how ISP works it is necessary to first discuss
two special Flash registers; the BOOT VECTOR and the STATUS
BYTE. At the falling edge of reset the MCU examines the contents
of the Status Byte. If the Status Byte is set to zero, power-up
execution starts at location 0000H which is the normal start address
of the user’s application code. When the Status Byte is set to a
value other than zero, the contents of the Boot Vector is used as the
high byte of the execution address and the low byte is set to 00H.
The factory default setting is 0FCH, corresponds to the address
0FC00H for the factory masked-ROM ISP boot loader (Boot ROM).
A custom boot loader can be written with the Boot Vector set to the
custom boot loader.

Note: When erasing the Status Byte or Boot Vector, both
bytes are erased at the same time. It is necessary to
reprogram the Boot Vector after erasing and updating the
Status Byte.

The bootloader may also be executed by meeting the following
conditions at the falling edge of reset:

• PSEN is held low

• EA\ is greater than VIH

• P2.6 and P2.7 are high or floating1

• ALE is high or floating

This has the same effect as a non–zero status byte. This allows an
application to be built that will normally execute the end users code
but can be manually forced into ISP operation.

The ISP feature allows programming of the Flash EPROM through
the serial port.

The ISP programming is accomplished by serial boot loader
subroutines found in the BOOTROM. These routines use Intel hex
records to receive commands and data from external sources such
as a host PC. (Details of these hex records are described in a later
section of this application note.)

1. P2.6 and P2.7 are not required to be in any particular state in the 2nd generation P89C51Rx2 devices. These devices are distinguished by the absence of an “H” in
the suffix.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 6

ENBOOT = 0

ENBOOT = 1

Boot Vector

PSEN

Status Byte

Reset
0000

2000

4000

8000

C000

FC00

FFFF

�0

Low

High

AUXR1

ENBOOT

SU01360

PROGRAM MEMORY

Boot ROM

=0

Figure 2. ISP Flow Chart

The Boot ROM code is located at memory address FC00H and can
be invoked by having the Status byte non-zero and having the Boot
Vector = FCH. (If the Boot Vector is a value other than FCH, an
attempt to enter the ISP mode will start execution at the wrong
address and may result in incorrect responses). After programming
the Flash, the status byte should be programmed to zero in order to
allow execution of the user’s application code beginning at address
0000H.

We recommend using the following sequence for ISP programming.
Refer to Table 3 for data record structure:

1. Enter the ISP mode by applying one of the methods previously
described (non-zero Status Byte, PSEN, etc.).

2. Send an uppercase “U” from the host to the microcontroller to
autobaud.

3. Send a record from the host to the microcontroller to specify the
oscillator frequency.

4. Send a record from the host to the microcontroller to erase the
desired block(s).

5. Send records from the host to the microcontroller to program
desired data into the device.

6. Send a record to erase both Status Byte and Boot Vector after
ISP has been successfully done. There is no way to erase the
Status Byte without erasing the Boot Vector.

7. Send a record to program the Boot Vector back to the original
value (0FCH) if the you want to keep the default serial loader as
the ISP communication channel.

8. Write 00H to the Status Byte so that the program will begin at
address 0000H after reset.

Using the In-System Programming (ISP)
The ISP feature allows for a wide range of baud rates to be used in
your application, independent of the oscillator frequency. It is also
adaptable to a wide range of oscillator frequencies. This is
accomplished by measuring the bit-time of a single bit in a received
character. This information is then used to program the baud rate in
terms of timer counts based on the oscillator frequency. The ISP
feature requires that an initial character (an uppercase U) be sent to
the 89C51Rx+/Rx2/66x to establish the baud rate. The ISP firmware
provides auto-echo of received characters.

Once baud rate initialization has been performed, the ISP firmware
will only accept Intel Hex-type records. Intel Hex records consist of
ASCII characters used to represent hexadecimal values and are
summarized below:

:NNAAAARRDD..DDCC<crlf>

In the Intel Hex record, the “NN” represents the number of data
bytes in the record. The 89C51Rx+/Rx2/66x will accept up to 16
(10H) data bytes. The “AAAA” string represents the address of the
first byte in the record. If there are zero bytes in the record this field
is often set to 0000. The “RR” string indicates the record type. A
record type of “00” is a data record. A record type of “01” indicates
the end-of-file mark. In this application additional record types will be
added to indicate either commands or data for the ISP facility. The
maximum number of data bytes in a record is limited to 16 (decimal).
ISP commands are summarized in Table 3.

As a record is received by the 89C51Rx+/Rx2/66x the information in
the record is stored internally and a checksum calculation is
performed. The operation indicated by the record type is not
performed until the entire record has been received. Should an error
occur in the checksum, the 89C51Rx+/Rx2/66x will send an “X” out

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 7

the serial port indicating a checksum error. If the checksum
calculation is found to match the checksum in the record then the
command will be executed. In most cases successful reception of
the record will be indicated by transmitting a “.” character out the
serial port (displaying the contents of the internal program memory
is an exception).

In the case of a Data Record (record type 00) an additional check is
made. A “.” character will NOT be sent unless the record checksum
matched the calculated checksum and all of the bytes in the record
were successfully programmed. For a data record an “X” indicates
that the checksum failed to match and an “R” character indicates
that one of the bytes did not properly program. It is necessary to
send a type 02 record (specify oscillator frequency) to the
89C51Rx+/Rx2/66x before programming data.

The ISP facility was designed so that specific crystal frequencies
were not required in order to generate baud rates or time the
programming pulses. The user thus needs to provide the
89C51Rx+/Rx2/66x with information required to generate the proper
timing. Record type 02 is provided for this purpose.

Software utilities to implement ISP programming with a PC are
available online (see next section).

Note: Some ISP and IAP functions are only available for
the 2nd generation P89C51Rx2 devices. The shaded
areas in the following tables denote these functions.
These Rx2 devices can be distinguished from older Rx2
devices by the absence of an “H” in the part number.

Table 3. Intel-Hex Records Used by In-System Programming
RECORD

TYPE
COMMAND/DATA FUNCTION

00 Program Data
:nnaaaa00dd....ddcc

Where:
nn = number of bytes (hex) in record
aaaa = memory address of first byte in record
dd....dd = data bytes
cc = checksum

Example:
:10008000AF5F67F0602703E0322CFA92007780C3FD

01 End of File (EOF), no operation
:xxxxxx01cc

Where:
xxxxxx = required field, but value is a “don’t care”
cc = checksum

Example:
:00000001FF

02 Specify Oscillator Frequency
:01xxxx02ddcc

Where:
xxxx = required field, but value is a “don’t care”
dd = integer oscillator frequency rounded down to nearest MHz
cc = checksum

Example:
:0100000210ED (dd = 10h = 16, used for 16.0–16.9 MHz)

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 8

RECORD
TYPE

COMMAND/DATA FUNCTION

03 Miscellaneous Write Functions
:nnxxxx03ffssddcc

Where:
nn = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
03 = Write Function
ff = subfunction code
ss = selection code
dd = data input (as needed)
cc = checksum

Subfunction Code = 01 (Erase Blocks)
ff = 01
ss = block code as shown below:

block 0, 0k to 8k, 00H
block 1, 8k to 16k, 20H
block 2, 16k to 32k, 40H

Example:
 :020000030120DA erase block 1

Subfunction Code = 04 (Erase Boot Vector and Status Byte)
ff = 04
ss = don’t care
Example:
 :020000030400F7 erase boot vector and status byte

Subfunction Code = 05 (Program Security Bits)
ff = 05
ss = 00 program security bit 1 (inhibit writing to Flash)
 01 program security bit 2 (inhibit Flash verify)
 02 program security bit 3 (disable external memory)
Example:
 :020000030501F5 program security bit 2

Subfunction Code = 06 (Program Status Byte or Boot Vector)
ff = 06
ss = 00 program status byte

01 program boot vector

2nd gen Rx2 02 program 6x/12x bit (dd:80) (bit 7=0 represents 12x, bit 7=1 represents 6x)

dd = data
Example:
 :030000030601FCF7 program boot vector with 0FCH

2nd gen Rx2 Example:
 :0300000306028072 program config[7]

Subfunction Code = 07 (Full Chip Erase)
Erases all blocks, security bits, and sets status and boot vector to default values
ff = 07
ss = don’t care
dd = don’t care
Example:
 :0100000307F5 full chip erase

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 9

RECORD
TYPE

COMMAND/DATA FUNCTION

2nd gen Rx2 Subfunction Code = 0C (Erase Block : each block is 4k sizes)
ff = 0C
ss = block code as shown below:

Block 0 , 0k~4k , 00H
Block 1 , 4k~8k , 10H
Block 2 , 8k~12k , 20H
Block 3 , 12k~16k , 30H
Block 4 , 16k~20k , 40H
Block 5 , 20k~24k , 50H
Block 6 , 24k~28k , 60H
Block 7 , 28k~32k , 70H
Block 8 , 32k~36k , 80H
Block 9 , 36k~40k , 90H
Block 10 , 40k~44k , A0H
Block 11 , 44k~48k, B0H
Block 12 , 48k~52k, C0H
Block 13 , 52k~56k, D0H
Block 14 , 56k~60k, E0H
Block 15 , 60k~64k, F0H

Example:
:0200000030C20CF (Erase 4k block 2)

04 Display Device Data or Blank Check – Record type 04 causes the contents of the entire Flash array to be sent out the seri-
al port in a formatted display. This display consists of an address and the contents of 16 bytes starting with that address.
No display of the device contents will occur if security bit 2 has been programmed. Data to the serial port is initiated by the
reception of any character and terminated by the reception of any character.

General Format of Function 04
:05xxxx04sssseeeeffcc

Where:
05 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
04 = “Display Device Data or Blank Check” function code
ssss = starting address
eeee = ending address
ff = subfunction

 00 = display data
 01 = blank check

2nd gen Rx2 02 = display data in data block (the valid address: 0001~0FFFH)

cc = checksum
Example:

:0500000440004FFF0069 display 4000–4FFF
Example:

:0500000400000FFF02E7 display data in data block (the data in address 0000 is invalid)

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 10

RECORD
TYPE

COMMAND/DATA FUNCTION

05 Miscellaneous Read Functions

General Format of Function 05
:02xxxx05ffsscc

Where:
02 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
05 = “Miscellaneous Read” function code
ffss = subfunction and selection code

0000 = read signature byte – manufacturer id (15H)
0001 = read signature byte – device id # 1 (C2H)
0002 = read signature byte – device id # 2

2nd gen Rx2
2nd gen Rx2

0003 = read 12x/6x bit (bit 7)
0080 = read ROM code revision

0700 = read security bits
0701 = read status byte
0702 = read boot vector

cc = checksum
Example:

:020000050001F8 read signature byte – device id # 1
Example:

:020000050003F6 read config (The bit7=0 represent 12x, bit7=1 represent 6x)
Example:

:02000005008079 read ROM Code Revision (0A: Rev. A, 0B:Rev. B)

06 Direct Load of Baud Rate (not available with 89C51RB+/RC+/RD+ devices)

General Format of Function 06
:02xxxx06hhllcc

Where:
02 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
06 = ”Direct Load of Baud Rate” function code
hh = high byte of Timer 2
ll = low byte of Timer 2
cc = checksum

Example:
:02000006F500F3

07
2nd gen Rx2

Program data in data block
:nnaaaa07dd....ddcc

Where:
nn = number of bytes (hex) in record
aaaa = memory address of first byte in record(the valid address : 0001~0FFFH)
dd....dd = data bytes
cc = checksum

Example:
:10008007AF5F67F0602703E0322CFA92007780C3F6

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 11

WinISP and FlashMagic: two free Windows–based
In–System Programming Utilities available online

How to download WinISP:

1. Direct your browser to the following page:
http://www.semiconductors.com/mcu/download/80c51/flash/

2. Download “WinISP.exe”

3. Execute WinISP.exe to install the software

How to download FlashMagic:

1. Direct your browser to the following page:
http://www.esacademy.com/software/flashmagic/

2. Download FlashMagic

3. Execute “flashmagic.exe” to install the software

Some hints on WinISP
Launch the ISP program into a window. Use the mouse to select the
part type, the Windows serial port being used, and the oscillator
frequency in your application.

CHIP – selects the chip type.

PORT – Selects which port on the host computer is connected
to the ISP board. (COM1 – COM4)

RANGE – Selects the beginning and ending address.

WINISP Commands
Load File

Click the LOAD FILE button and enter the desired file name
into the dialog box

Erase Blocks
Click the ERASE BLOCKS button and use the mouse to
select the desired blocks. Click the ERASE! button.

Blank Check
Click the BLANK CHECK button.

Program Part
Click the PROGRAM PART button.

Read Part
Click the READ PART button.

Verify Part
Click the VERIFY PART button.

Fill Buffer
Enter the starting and ending address in the RANGE boxes.
Click the FILL BUFFER button. Enter the data pattern in the
next dialog box.

NOTE: The MCU must be running the BOOT ROM
program for WINISP or FlashMagic to be able to
communicate with the microcontroller.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 12

P35 17
P3.5/T1

P34 16
P3.4/T0

P33 15
INT1/P3.3

P32 14
INT0/P3.2

P17 9
P1.7/CEX4

P16 8
P1.6/CEX3

P15 7
P1.5/CEX2

P14 6
P1.4/CEX1

P13 5
P1.3/CEX0

P12 4
P1.2/ECI

P11 3
P1.1/T2EX

P10 2
P1.0/T2

RST 10
RST

VPP 35
EA/VPP

20 XTAL2

21
XTAL1

P89C51RD+ PLCC

U1
22MHz PARALLEL

Y121

21

C1

C2

27pF

27pF

2
1

2
1

C15
0.1uF

+5V

2
1

1
2

D1
1N914

R1
10K

2
1

1
2

C7
10uF 16V

S1
RST

PSEN32
PSEN

RXD11
P3.0/RXD

TXD13
P3.1/TXD

ALE33
PROG/ALE

P3719
P3.7/RD

P3618
P3.6/WR

P2731
P2.7/A15

P2630
P2.6/A14

P2529
P2.5/A13

P2428
P2.4/A12

P2327
P2.3/A11

P2226
P2.2/A10

P2125
P2.1/A9

P2024
P2.0/A8

P0736
P0.7/AD7

P0637
P0.6/AD6

P0538
P0.5/AD5

P0439
P0.4/AD4

P0340
P0.3/AD3

P0241
P0.2/AD2

P0142
P0.1/AD1

P0043
P0.0/AD0

3
ISP

NORMAL 1
S2

2

JP7

1
2

IN VPP = 5V
OUT VPP = 12V

+5V

R4
100K

1
2

1
2

R5
100K

1
U4

GND2
SEL

3
SHDN4
SENSE

LT1301CN8
VPP

8
7
6
5

PGND
SW
VIN
ILIM

+5V

1

TP1
TP

VPP21

MBRS130LT3
D2

2
1

C10
L1
10uHy

2
1

C9
1uF

2
1

47uF 16V

2
1

C8
0.1uF

2
1

C4
0.1uF 2

1

C6
0.1uF

+5V

U2

MAX232CPE

15
GND

6
V–

16
VCC

2
V+

2 1

C2–

C2+

C1–

C1+

5

4

3

1

2 1

8
R2IN

13
R1IN GND

R2OUT
9 R1OUT

12

T2IN
10 T1IN
11

RXD

GND
TXD 14

T1OUT 7
T2OUT

P1
FEMALE 90DEG. DB9

C3

0.1uF

C5

0.1uF

5 9 4 8 3 7 2 6 1

ONLY NEEDED FOR 89C51Rx+ DEVICES

SU01348

Figure 3. Typical ISP Implementation

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 13

In Application Programming Method
Several In Application Programming (IAP) calls are available for use by
an application program to permit selective erasing and programming of
Flash sectors. All calls are made through a common interface,
PGM_MTP. The programming functions are selected by setting up
the microcontroller’s registers before making a call to PGM_MTP at

FFF0H. The oscillator frequency is an integer number rounded down
to the nearest megahertz. For example, set R0 to 11 for 11.0592 MHz.
Results are returned in the registers. The IAP calls are shown in
Table 4.

Interrupts and the watchdog timer must be disabled while IAP
subroutines are executing.

Table 4. IAP calls
IAP CALL PARAMETER

PROGRAM BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 02h or R1 = 82h (WDT feed)
DPTR = address of byte to program
ACC = byte to program

Return Parameter
ACC = 00 if pass, !00 if fail

ERASE 4K CODE BLOCK
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 0Ch or R1 = 8Ch (WDT feed)
DPH = address of 4k code block

DPH = 00H , 4k block 0, 0k~4k
DPH = 10H , 4k block 1, 4k~8k
DPH = 20H , 4k block 2, 8k~12k
DPH = 30H , 4k block 3, 12k~16k
DPH = 40H , 4k block 4, 16k~20k
DPH = 50H , 4k block 5, 20k~24k
DPH = 60H , 4k block 6, 24k~28k
DPH = 70H , 4k block 7, 28k~32k
DPH = 80H , 4k block 8, 32k~34k
DPH = 90H , 4k block 9, 34k~38k
DPH = A0H , 4k block 10, 38k~42k
DPH = B0H , 4k block 11, 42k~46k
DPH = C0H , 4k block 12, 46k~50k
DPH = D0H , 4k block 13, 50k~54k
DPH = E0H , 4k block 14, 54k~58k
DPH = F0H , 4k block 15, 58k~62k

DPL = 00h
Return Parameter

ACC = 00 if pass, !=00 if fail

ERASE 8K / 16K CODE
BLOCK

Input Parameters:
R0 = osc freq (integer)
R1 = 01h or R1 = 81h (WDT feed)
DPH = address of code block

DPH = 00H , block 0 , 0k~8k
DPH = 20H , block 1 , 8k~16k
DPH = 40H , block 2 , 16~32k
DPH = 80H , block 3 , 32k~48k
DPH = C0H , block 4 , 48k~64k

DPH = 00h
Return Parameter

ACC = 00 if pass, !=0 if fail

ERASE STATUS BYTE &
BOOT VECTOR

Input Parameters:
R0 = osc freq (integer)
R1 = 04h or R1 = 84h (WDT feed)
DPH = 00H
DPL = don’t care

Return Parameter
ACC = 00 if pass, !=0 if fail

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 14

IAP CALL PARAMETER

PROGRAM SECURITY BITS Input Parameters:
R0 = osc freq (integer)
R1 = 05h or R1 = 85h (WDT feed)
DPH = 00h
DPL = 00h , security bit #1
DPL = 01h , security bit #2
DPL = 02h , security bit #3

Return Parameter
ACC = 00 if pass, !=0 if fail

PROGRAM STATUS BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 00H – program status byte
ACC = status byte

Return Parameter
ACC = 00 if pass, !=0 if fail

PROGRAM BOOT VECTOR Input Parameters:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 01H – program boot vector
ACC = boot vector

Return Parameter
ACC = 00 if pass, !=0 if fail

PROGRAM 6-CLK/12-CLK
CONFIGURATION BIT
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 02H – program config bit
ACC = 80H (MSB = 6-clk/12-clk bit)

Return Parameter
ACC = 00 if pass, !=0 if fail

PROGRAM DATA BLOCK
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 0Dh or R1 = 8Dh (WDT feed)
DPTR = address of byte to program

(valid addresses = 0001h~0FFFh)
ACC = data

Return Parameter
ACC = 00 if pass, !=0 if fail

READ DEVICE DATA Input Parameters:
R0 = osc freq (integer)
R1 = 03h or R1 = 83h (WDT feed)
DPTR = address of byte to read

Return Parameter
ACC = value of byte read

READ DATA BLOCK
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 0Eh or R1 = 8Eh (WDT feed)
DPTR = address of byte to read

(valid addresses = 0001h~0FFFh)
Return Parameter

ACC = value of byte read

READ MANUFACTURER ID Input Parameters:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 00h – read manufacturer ID

Return Parameter
ACC = value of byte read

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 15

IAP CALL PARAMETER

READ DEVICE ID #1 Input Parameters:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 01h – read device ID #1

Return Parameter
ACC = value of byte read

READ DEVICE ID #2 Input Parameters:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 02h – read device ID #2

Return Parameter
ACC = value of byte read

READ SECURITY BITS Input Parameters:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 00h – read lock byte

Return Parameter
ACC = value of byte read

READ STATUS BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 01h – read status byte

Return Parameter
ACC = value of byte read

READ BOOT VECTOR Input Parameters:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 02h – read boot vector

Return Parameter
ACC = value of byte read

READ CONFIG
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 03h – read config byte

Return Parameter
ACC = value of byte read

READ REVISION
(2nd generation Rx2)

Input Parameters:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 80h – read revision of ROM code

Return Parameter
ACC = value of byte read

FULL CHIP ERASE Input Parameters:
R0 = osc freq (integer)
R1 = 08h or R1 = 88h (WDT feed)
DPTR = don’t care

Return Parameter
ACC = 0 if pass , !=0 if fail

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 16

REVISION HISTORY

Version Date Description

V1.9 2002 Jun 24 Added P2.6 to hardware entry to ISP mode requirements. Added new
Rx2 functionality.

V1.8 2001 Oct 11 Page 11. Five additional erase cycles added for erasing the Boot Vector
and the Status Byte during IAP.

V1.7 2000 Jul 28 Previous release.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2002 Jun 24 17

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Contact information
For additional information please visit
http://www.semiconductors.philips.com . Fax: +31 40 27 24825

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com .

 Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.

Date of release: 07-02

Document order number: 9397 750 10137

������
�����
	����
�

